

P-003-001651 Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2020

**Design of Exp. & Sampling Tech.
(Old Course)**

Faculty Code : 003

Subject Code : 001651

Time : $2\frac{1}{2}$ Hours] [Total Marks : **70**

1 Fill in the blanks : (Each 1 Mark) **20**

- (1) Systematic influences likely to occur in an experiment can be removed through _____.
- (2) Greater homogeneity within the block in an experiment is better maintained through _____.
- (3) Among k treatments, there can at most be _____ orthogonal contrasts.
- (4) The design where only replication and randomization are used is _____.
- (5) If there are t treatments and m blocks in a randomized block design, the error degrees of freedom in ANOVA table be _____.
- (6) An experiment involving two or more factors at various levels is called a _____ experiment.
- (7) In factorial experiments, one estimates _____ and _____ effects.
- (8) In a 2^n factorial, the higher level of a factor is known as _____.
- (9) Preferably _____ interaction is chosen for confounding.
- (10) The method of confounding to reduce block size is applicable only for _____ experiment.
- (11) All sampling units are present in _____ population.
- (12) A function for estimating a parameter is called as _____.
- (13) Number of samples of size n that can be drawn out of N population units through simple random sampling without replacement is _____.
- (14) Stratified sampling is appropriate when population is _____.

- (15) Optimum allocation is also known as _____ allocation.
 (16) Standard error of mean in terms of S^2 is _____.
 (17) Attaining maximum efficiency in estimating for a fixed cost is apart of principle of _____.
 (18) Stratified sampling is not preferred when the population is _____.
 (19) The main disadvantage of systematic sampling is that _____ formula for estimating the standard error of sample mean is available.
 (20) When the population size N is not divisible by the sample size n , _____ systematic sampling appropriate.
- 2 (A) Give the answer : (Any Three) 6
- (1) Define Design of Experiment
 - (2) Write ANOVA table for one way classification.
 - (3) Define Experimental error
 - (4) What is meant by sampling frame?
 - (5) Prove that $E(\bar{y}) = \bar{Y}$
 - (6) Obtain variance of simple random sample mean if $N = 1000, n = 100, s^2 = 480$
- (B) Give the answer : (Any Three) 9
- (1) Write the set of orthogonal contrasts for main effect and interaction in 2^3 – experiment
 - (2) Explain types of confounding and also define its difference.
 - (3) Prove that $E(s^2) = S^2$
 - (4) Prove that $Var(\bar{y}_n)_{ran} > V(\bar{y}_{sys})$ if and only if $S^2_{wsys} > S^2$
 - (5) Prove that if $N \rightarrow \infty$ then $V(\bar{y}_{st}) = \frac{\sum_{h=1}^L w^2 h S^2 h}{n_h}$
 where $W_h = \frac{N_h}{N}$.
 - (6) The three samples below have been obtained from the normal population with equal variance. Test the hypothesis at 5% level that the population means are equal. $\left[F_{(0.05; 2, 11)} = 4.26 \right]$

x_1	6	8	5	3
x_2	7	9	10	8
x_3	3	5	6	8

(C) Give the answer : (Any **Two**) 10

- (1) Explain estimation of one missing plot in R.B.D.
- (2) Explain analysis of LSD
- (3) Explain basic principle of design of experiment
- (4) Prove that $V(\bar{y}_{st}) \leq V(\bar{y}_{sys}) \leq V(\bar{y}_n)_{ran}$ if population consists of a linear trend
- (5) Prove that $V(\bar{y}_{sys}) = \frac{N-1}{N} \frac{S^2}{n} [1 + (n-1)\rho]$

3 (A) Give the answer : (Any **Three**) 6

- (1) Define Simple Random Sampling
- (2) In what situations sampling is inevitable?
- (3) Define : Replication, Precision
- (4) Define Symmetrical factorial experiment
- (5) Write the Yate's method for a 2^2 -experiment
- (6) It is known that the population standard deviation in waiting time for LPG gas cylinder in Rajkot is 16 days. How large a sample should be chosen to be 95% confident, the waiting time is within 8 days of true average.

(B) Give the answer : (Any **Three**) 9

- (1) Explain layout of design of Latin Square Design
- (2) Yate's Method for 2^3 -experiment
- (3) Prove that $V(\bar{y}_{sys}) = \frac{N-1}{N} S^2 - \frac{N-k}{N} S_{wys}^2$
- (4) Prove that : (i) $E(\bar{y}_{st}) = \bar{Y}$

$$(ii) V(\bar{y}_{st}) = \frac{1}{N^2} \left\{ \sum_{h=1}^L N_h \frac{N_h(N_h - n_h) s^2 h}{n_h} \right\}$$

- (5) The following data represent the number of units of a product produced by 3 different workers using different types of machines. $[F_{(0.05;9,3)} = 8.81]$
- Workers

Machines	A	B	C	D
W	10	15	7	12
X	12	20	10	16
Y	14	7	9	10
Z	8	16	20	8

Test the hypothesis at 5% level (i) whether the mean productivity is the same for the different machines types, and (ii) whether the three workers differ with respect to mean productivity.

- (6) A population is divided in three strata. The information regarding them is as follows :

Stratum	N_h	S_h
1	100	4
2	200	5
3	200	3

Find $V(\bar{y}_{st})$ under optimum allocation 10% stratified sample is to be taken.

- (C) Give the answer : (Any Two) 10

- (1) Explain estimation of one missing plot in L.S.D.
- (2) Efficiency L.S.D. over in R.B.D.
- (3) Prove that $V(\bar{y}_{ran}) \geq V(\bar{y}_{st})_{prop} \geq V(\bar{y}_{st})_{opt}$
- (4) Prove that $V(\bar{y}_{st})$ is minimum for fixed total size

of the sample n and $n_i = \frac{nN_iS_i}{\sum_{i=1}^k N_iS_i}$

- (5) For studying the characteristics the observation of a population are 1,2,3,4. How many random samples of size 2, without replacement can be taken from it? Making a list of all the samples verify the following results :

(i) $E(\bar{y}) = \bar{Y}$

(ii) $V(\bar{y}) = \frac{N-n}{n} \frac{S^2}{n}$ (iii) $E(s^2) = S^2$